424 research outputs found

    Gene Expression and Discovery During Lens Regeneration in Mouse: Regulation of Epithelial to Mesenchymal Transition and Lens Differentiation

    Get PDF
    Purpose: It has been shown that after extracapsular lens removal by anterior capsulotomy in the mouse, the lens can be regenerated. However, as the capsular bag is filled with fibers, epithelial to mesenchymal transition (EMT), an event which is common after cataract surgery as well, takes place during early stages. This study, using a unique mouse model, was undertaken to identify novel regulators and networks in order to more clearly understand secondary cataracts at the molecular level

    Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments

    Get PDF
    BACKGROUND: The small sample sizes often used for microarray experiments result in poor estimates of variance if each gene is considered independently. Yet accurately estimating variability of gene expression measurements in microarray experiments is essential for correctly identifying differentially expressed genes. Several recently developed methods for testing differential expression of genes utilize hierarchical Bayesian models to "pool" information from multiple genes. We have developed a statistical testing procedure that further improves upon current methods by incorporating the well-documented relationship between the absolute gene expression level and the variance of gene expression measurements into the general empirical Bayes framework. RESULTS: We present a novel Bayesian moderated-T, which we show to perform favorably in simulations, with two real, dual-channel microarray experiments and in two controlled single-channel experiments. In simulations, the new method achieved greater power while correctly estimating the true proportion of false positives, and in the analysis of two publicly-available "spike-in" experiments, the new method performed favorably compared to all tested alternatives. We also applied our method to two experimental datasets and discuss the additional biological insights as revealed by our method in contrast to the others. The R-source code for implementing our algorithm is freely available at . CONCLUSION: We use a Bayesian hierarchical normal model to define a novel Intensity-Based Moderated T-statistic (IBMT). The method is completely data-dependent using empirical Bayes philosophy to estimate hyperparameters, and thus does not require specification of any free parameters. IBMT has the strength of balancing two important factors in the analysis of microarray data: the degree of independence of variances relative to the degree of identity (i.e. t-tests vs. equal variance assumption), and the relationship between variance and signal intensity. When this variance-intensity relationship is weak or does not exist, IBMT reduces to a previously described moderated t-statistic. Furthermore, our method may be directly applied to any array platform and experimental design. Together, these properties show IBMT to be a valuable option in the analysis of virtually any microarray experiment

    Functional Genomics Annotation of a Statistical Epistasis Network Associated with Bladder Cancer Susceptibility

    Get PDF
    Background: Several different genetic and environmental factors have been identified as independent risk factors for bladder cancer in population-based studies. Recent studies have turned to understanding the role of gene-gene and gene-environment interactions in determining risk. We previously developed the bioinformatics framework of statistical epistasis networks (SEN) to characterize the global structure of interacting genetic factors associated with a particular disease or clinical outcome. By applying SEN to a population-based study of bladder cancer among Caucasians in New Hampshire, we were able to identify a set of connected genetic factors with strong and significant interaction effects on bladder cancer susceptibility. Findings: To support our statistical findings using networks, in the present study, we performed pathway enrichment analyses on the set of genes identified using SEN, and found that they are associated with the carcinogen benzo[a]pyrene, a component of tobacco smoke. We further carried out an mRNA expression microarray experiment to validate statistical genetic interactions, and to determine if the set of genes identified in the SEN were differentially expressed in a normal bladder cell line and a bladder cancer cell line in the presence or absence of benzo[a]pyrene. Significant nonrandom sets of genes from the SEN were found to be differentially expressed in response to benzo[a]pyrene in both the normal bladder cells and the bladder cancer cells. In addition, the patterns of gene expression were significantly different between these two cell types. Conclusions: The enrichment analyses and the gene expression microarray results support the idea that SEN analysis of bladder in population-based studies is able to identify biologically meaningful statistical patterns. These results bring us a step closer to a systems genetic approach to understanding cancer susceptibility that integrates population and laboratory-based studies

    Forced swim test induces divergent global transcriptomic alterations in the hippocampus of high versus low novelty-seeker rats

    Get PDF
    BACKGROUND: Many neuropsychiatric disorders, including stress-related mood disorders, are complex multi-parametric syndromes. Susceptibility to stress and depression is individually different. The best animal model of individual differences that can be used to study the neurobiology of affect regards spontaneous reactions to novelty. Experimentally, when naive rats are exposed to the stress of a novel environment, they display a highly variable exploratory activity and are classified as high or low responders (HR or LR, respectively). Importantly, HR and LR rats do not seem to exhibit a substantial differentiation in relation to their ‘depressive-like’ status in the forced swim test (FST), a widely used animal model of ‘behavioral despair’. In the present study, we investigated whether FST exposure would be accompanied by phenotype-dependent differences in hippocampal gene expression in HR and LR rats. RESULTS: HR and LR rats present a distinct behavioral pattern in the pre-test session but develop comparable depressive-like status in the second FST session. At 24 h following the second FST session, HR and LR rats (stressed and unstressed controls) were sacrificed and hippocampal samples were independently analyzed on whole rat genome Illumina arrays. Functional analysis into pathways and networks was performed using Ingenuity Pathway Analysis (IPA) software. Notably, hippocampal gene expression signatures between HR and LR rats were markedly divergent, despite their comparable depressive-like status in the FST. These molecular differences are reflected in both the extent of transcriptional remodeling (number of significantly changed genes) and the types of molecular pathways affected following FST exposure. A markedly higher number of genes (i.e., 2.28-fold) were statistically significantly changed following FST in LR rats, as compared to their HR counterparts. Notably, genes associated with neurogenesis and synaptic plasticity were induced in the hippocampus of LR rats in response to FST, whereas in HR rats, FST induced pathways directly or indirectly associated with induction of apoptotic mechanisms. CONCLUSIONS: The markedly divergent gene expression signatures exposed herein support the notion that the hippocampus of HR and LR rats undergoes distinct transcriptional remodeling in response to the same stress regimen, thus yielding a different FST-related ‘endophenotype’, despite the seemingly similar depressive-like phenotype

    Selective repression of retinoic acid target genes by RIP140 during induced tumor cell differentiation of pluripotent human embryonal carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of retinoids as anti-cancer agents has been limited due to resistance and low efficacy. The dynamics of nuclear receptor coregulation are incompletely understood. Cell-and context-specific activities of nuclear receptors may be in part due to distinct coregulator complexes recruited to distinct subsets of target genes. RIP140 (also called NRIP1) is a ligand-dependent corepressor that is inducible with retinoic acid (RA). We had previously shown that RIP140 limits RA induced tumor cell differentiation of embryonal carcinoma; the pluriopotent stem cells of testicular germ cell tumors. This implies that RIP140 represses key genes required for RA-mediated tumor cell differentiation. Identification of these genes would be of considerable interest.</p> <p>Results</p> <p>To begin to address this issue, microarray technology was employed to elucidate in a <it>de novo </it>fashion the global role of RIP140 in RA target gene regulation of embryonal carcinoma. Subclasses of genes were affected by RIP140 in distinct manners.</p> <p>Interestingly, approximately half of the RA-dependent genes were unaffected by RIP140. Hence, RIP140 appears to discriminate between different classes of RA target genes. In general, RIP140-dependent gene expression was consistent with RIP140 functioning to limit RA signaling and tumor cell differentiation. Few if any genes were regulated in a manner to support a role for RIP140 in "active repression". We also demonstrated that RIP140 silencing sensitizes embryonal carcinoma cells to low doses of RA.</p> <p>Conclusion</p> <p>Together the data demonstrates that RIP140 has profound effects on RA-mediated gene expression in this cancer stem cell model. The RIP140-dependent RA target genes identified here may be particularly important in mediating RA-induced tumor cell differentiation and the findings suggest that RIP140 may be an attractive target to sensitize tumor cells to retinoid-based differentiation therapy. We discuss these data in the context of proposed models of RIP140-mediated repression.</p

    A Complement Receptor C5a Antagonist Regulates Epithelial to Mesenchymal Transition and Crystallin Expression After Lens Cataract Surgery in Mice

    Get PDF
    Purpose: To evaluate the effects of complement employing a mouse model for secondary cataract. Methods: The role of complement receptor C5a (CD88) was evaluated after cataract surgery in mice. An antagonist specific to C5a receptor was administered intraperitoneally to mice. Epithelial to mesenchymal transition (EMT) was evaluated by alpha-smooth muscle actin (α-SMA) staining and proliferation by bromodeoxyuridine (5-bromo-2\u27- deoxyuridine, BrdU) incorporation. Gene expression patterns was examined by microarray analysis and quantitative polymerase chain reaction (QPCR). Results: We found that administration of a C5aR antagonist in C57BL/6J mice decreases EMT, as evidenced by α-SMA expression, and cell proliferation. Gene expression by microarray analysis reveals discreet steps of gene regulation in the two major stages that of EMT and lens fiber differentiation in vivo. A hallmark of the microarray analysis is that the antagonist seems to be a novel stage-specific regulator of crystallin genes. At week two, which is marked by lens fiber differentiation genes encoding 12 crystallins and 3 lens-specific structural proteins were severely down-regulated. Conclusions: These results suggest a possible therapeutic role of an antagonist to C5aR in preventing secondary cataracts after surgery. Also these results suggest that crystallin gene expression can be regulated by pro-inflammatory events in the eye

    A new method to remove hybridization bias for interspecies comparison of global gene expression profiles uncovers an association between mRNA sequence divergence and differential gene expression in Xenopus

    Get PDF
    The recent sequencing of a large number of Xenopus tropicalis expressed sequences has allowed development of a high-throughput approach to study Xenopus global RNA gene expression. We examined the global gene expression similarities and differences between the historically significant Xenopus laevis model system and the increasingly used X.tropicalis model system and assessed whether an X.tropicalis microarray platform can be used for X.laevis. These closely related species were also used to investigate a more general question: is there an association between mRNA sequence divergence and differences in gene expression levels? We carried out a comprehensive comparison of global gene expression profiles using microarrays of different tissues and developmental stages of X.laevis and X.tropicalis. We (i) show that the X.tropicalis probes provide an efficacious microarray platform for X.laevis, (ii) describe methods to compare interspecies mRNA profiles that correct differences in hybridization efficiency and (iii) show independently of hybridization bias that as mRNA sequence divergence increases between X.laevis and X.tropicalis differences in mRNA expression levels also increase
    • …
    corecore